Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Infect Dis ; 128: 51-57, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2243113

ABSTRACT

OBJECTIVES: Omicron lineages BA.1/2 are considered to cause mild clinical courses. Nevertheless, fatal cases after those infections are recognized but little is known about risk factors. METHODS: A total of 23 full and three partial autopsies in deceased with known Omicron BA.1/2 infections have been consecutively performed. The investigations included histology, blood analyses, and molecular virus detection. RESULTS: COVID-19-associated diffuse alveolar damage was found in only eight cases (31%). This rate is significantly lower compared with previous studies, including non-Omicron variants, where rates between 69% and 92% were observed. Neither vaccination nor known risk factors were significantly associated with a direct cause of death by COVID-19. Only those patients who were admitted to the clinic because of COVID-19 but not for other reasons had a significant association with a direct COVID-19 -caused death (P >0.001). CONCLUSION: Diffuse alveolar damage still occurred in the Omicron BA.1/BA.2 era but at a considerably lower frequency than seen with previous variants of concern. None of the known risk factors discriminated the cases with COVID-19-caused death from those that died because of a different disease. Therefore, the host's genomics might play a key role in this regard. Further studies should elucidate the existence of such a genomic risk factor.


Subject(s)
COVID-19 , Humans , Autopsy , Research Design , Ambulatory Care Facilities , Genomics
2.
Cancer Med ; 12(8): 9313-9321, 2023 04.
Article in English | MEDLINE | ID: covidwho-2239843

ABSTRACT

PURPOSE: SARS-CoV-2 vaccines cause acute ipsilateral lymph node swelling in an important proportion of vaccines. Thus far, no malignant lymphadenopathies have been reported in temporal context to vaccination in the ipsilateral draining lymph node areas. EXPERIMENTAL DESIGN: Prompted by two cases with unilateral axillary lymphomas that occurred ipsilaterally to prior SARS-CoV-2 vaccination, we systematically retrieved all B-cell non-Hodgkin lymphomas at two German University Medical Centers diagnosed before and after introduction of SARS-CoV-2 vaccines in Germany. Available lymphoma tissue (n=19) was subjected to next-generation immunosequencing of the IGH locus. Malignant clonotypes were mined in the CoVabDab database and published data sets from 342 uninfected individuals, 55 individuals 28 days after anti-SARS-CoV-2 vaccination and 139 individuals with acute COVID-19 together encompassing over 1 million CDR3 sequences in total. RESULTS: Of 313 newly diagnosed cases in the two centers and observation periods, 27 unilateral manifestations in the defined deltoid draining regions were identified. The majority thereof were diffuse large B-cell lymphomas (18 of 27 cases). Eleven unilateral cases were diagnosed in the era of SARS-CoV-2 vaccination and 16 in the control period before introduction of such vaccines. Of the 11 unilateral lymphomas that occurred during the vaccination period, ten had received a SARS-CoV-2 vaccine prior to lymphoma diagnosis. These cases were further evaluated. While left-sided were more frequent than right-sided lymphomas (19 vs 8 cases), no statistically significant association of vaccination site and laterality of the lymphoma manifestation was found. The unilateral lymphomas showed a normal range of B-cell receptors typically found in these lymphoma subtypes with no evidence for anti-SARS-CoV-2 sequences in the malignant clonotype. CONCLUSIONS: Together, we found no evidence that the current SARS-CoV-2 vaccines could serve as a trigger for lymphomagenesis in the draining lymph node areas of the deltoid region used for vaccination.


Subject(s)
COVID-19 , Lymphoma, Non-Hodgkin , Lymphoma , Humans , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2 , Lymphoma/pathology , Vaccination , Lymphoma, Non-Hodgkin/pathology
3.
Front Immunol ; 13: 835156, 2022.
Article in English | MEDLINE | ID: covidwho-1902991

ABSTRACT

Complement plays an important role in the direct defense to pathogens, but can also activate immune cells and the release of pro-inflammatory cytokines. However, in critically ill patients with COVID-19 the immune system is inadequately activated leading to severe acute respiratory syndrome (SARS) and acute kidney injury, which is associated with higher mortality. Therefore, we characterized local complement deposition as a sign of activation in both lungs and kidneys from patients with severe COVID-19. Using immunohistochemistry we investigated deposition of complement factors C1q, MASP-2, factor D (CFD), C3c, C3d and C5b-9 as well as myeloperoxidase (MPO) positive neutrophils and SARS-CoV-2 virus particles in lungs and kidneys from 38 patients who died from COVID-19. In addition, tissue damage was analyzed using semi-quantitative scores followed by correlation with complement deposition. Autopsy material from non-COVID patients who died from cardiovascular causes, cerebral hemorrhage and pulmonary embolism served as control (n=8). Lung injury in samples from COVID-19 patients was significantly more pronounced compared to controls with formation of hyaline membranes, thrombi and edema. In addition, in the kidney tubular injury was higher in these patients and correlated with lung injury (r=0.361*). In autopsy samples SARS-CoV-2 spike protein was detected in 22% of the lungs of COVID-19 patients but was lacking in kidneys. Complement activation was significantly stronger in lung samples from patients with COVID-19 via the lectin and alternative pathway as indicated by deposition of MASP-2, CFD, C3d and C5b9. Deposits in the lung were predominantly detected along the alveolar septa, the hyaline membranes and in the alveolar lumina. In the kidney, complement was significantly more deposited in patients with COVID-19 in peritubular capillaries and tubular basement membranes. Renal COVID-19-induced complement activation occurred via the lectin pathway, while activation of the alternative pathway was similar in both groups. Furthermore, MPO-positive neutrophils were found in significantly higher numbers in lungs and kidneys of COVID-19 patients and correlated with local MASP-2 deposition. In conclusion, in patients who died from SARS-CoV-2 infection complement was activated in both lungs and kidneys indicating that complement might be involved in systemic worsening of the inflammatory response. Complement inhibition might thus be a promising treatment option to prevent deregulated activation and subsequent collateral tissue injury in COVID-19.


Subject(s)
COVID-19/immunology , Complement Pathway, Alternative/immunology , Lectins/immunology , Aged , Aged, 80 and over , Autopsy , COVID-19/pathology , COVID-19/virology , Complement System Proteins/immunology , Female , Humans , Kidney/immunology , Kidney/pathology , Kidney/virology , Lung/immunology , Lung/pathology , Lung/virology , Male , Middle Aged , Neutrophils/immunology , Peroxidase/immunology , SARS-CoV-2/immunology
4.
Clin Microbiol Infect ; 28(8): 1066-1075, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1859445

ABSTRACT

BACKGROUND: Many postmortem studies address the cardiovascular effects of COVID-19 and provide valuable information, but are limited by their small sample size. OBJECTIVES: The aim of this systematic review is to better understand the various aspects of the cardiovascular complications of COVID-19 by pooling data from a large number of autopsy studies. DATA SOURCES: We searched the online databases Ovid EBM Reviews, Ovid Embase, Ovid Medline, Scopus, and Web of Science for concepts of autopsy or histopathology combined with COVID-19, published between database inception and February 2021. We also searched for unpublished manuscripts using the medRxiv services operated by Cold Spring Harbor Laboratory. STUDY ELIGIBILITY CRITERIA: Articles were considered eligible for inclusion if they reported human postmortem cardiovascular findings among individuals with a confirmed SARS coronavirus type 2 (CoV-2) infection. PARTICIPANTS: Confirmed COVID-19 patients with post-mortem cardiovascular findings. INTERVENTIONS: None. METHODS: Studies were individually assessed for risk of selection, detection, and reporting biases. The median prevalence of different autopsy findings with associated interquartile ranges (IQRs). RESULTS: This review cohort contained 50 studies including 548 hearts. The median age of the deceased was 69 years. The most prevalent acute cardiovascular findings were myocardial necrosis (median: 100.0%; IQR, 20%-100%; number of studies = 9; number of patients = 64) and myocardial oedema (median: 55.5%; IQR, 19.5%-92.5%; number of studies = 4; number of patients = 46). The median reported prevalence of extensive, focal active, and multifocal myocarditis were all 0.0%. The most prevalent chronic changes were myocyte hypertrophy (median: 69.0%; IQR, 46.8%-92.1%) and fibrosis (median: 35.0%; IQR, 35.0%-90.5%). SARS-CoV-2 was detected in the myocardium with median prevalence of 60.8% (IQR 40.4-95.6%). CONCLUSIONS: Our systematic review confirmed the high prevalence of acute and chronic cardiac pathologies in COVID-19 and SARS-CoV-2 cardiac tropism, as well as the low prevalence of myocarditis in COVID-19.


Subject(s)
COVID-19 , Myocarditis , Aged , Autopsy , Humans , Lung , Myocarditis/epidemiology , SARS-CoV-2
5.
Virchows Arch ; 481(2): 139-159, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1787815

ABSTRACT

The use of autopsies in medicine has been declining. The COVID-19 pandemic has documented and rejuvenated the importance of autopsies as a tool of modern medicine. In this review, we discuss the various autopsy techniques, the applicability of modern analytical methods to understand the pathophysiology of COVID-19, the major pathological organ findings, limitations or current studies, and open questions. This article summarizes published literature and the consented experience of the nationwide network of clinical, neuro-, and forensic pathologists from 27 German autopsy centers with more than 1200 COVID-19 autopsies. The autopsy tissues revealed that SARS-CoV-2 can be found in virtually all human organs and tissues, and the majority of cells. Autopsies have revealed the organ and tissue tropism of SARS-CoV-2, and the morphological features of COVID-19. This is characterized by diffuse alveolar damage, combined with angiocentric disease, which in turn is characterized by endothelial dysfunction, vascular inflammation, (micro-) thrombosis, vasoconstriction, and intussusceptive angiogenesis. These findings explained the increased pulmonary resistance in COVID-19 and supported the recommendations for antithrombotic treatment in COVID-19. In contrast, in extra-respiratory organs, pathological changes are often nonspecific and unclear to which extent these changes are due to direct infection vs. indirect/secondary mechanisms of organ injury, or a combination thereof. Ongoing research using autopsies aims at answering questions on disease mechanisms, e.g., focusing on variants of concern, and future challenges, such as post-COVID conditions. Autopsies are an invaluable tool in medicine and national and international interdisciplinary collaborative autopsy-based research initiatives are essential.


Subject(s)
COVID-19 , Autopsy , Humans , Lung/pathology , Pandemics , SARS-CoV-2
6.
Mod Pathol ; 35(8): 1013-1021, 2022 08.
Article in English | MEDLINE | ID: covidwho-1773954

ABSTRACT

The rate of SARS-CoV-2 infections in vaccinees has become a relevant serious issue. This study aimed to determine the causes of death, histological organ alteration, and viral spread in relation to demographic, clinical-pathological, viral variants, and vaccine types for deceased individuals with proven SARS-CoV-2 infection after vaccination who died between January and November 2021. Twenty-nine consecutively collected cases were analyzed and compared to 141 nonvaccinated control cases. Autopsies were performed on 16 partially and 13 fully vaccinated individuals. Most patients were elderly and suffered from several relevant comorbidities. Real-time RT-PCR (RT-qPCR) identified a significantly increased rate of generalized viral dissemination within organ systems in vaccinated cases versus nonvaccinated cases (45% vs. 16%, respectively; P = 0.008) mainly with Ct-values of higher than 25 in non-respiratory samples. However, vaccinated cases also showed high viral loads, reaching Ct-values below 10, especially in the upper airways and lungs. This was accompanied by high rates of pulmonal bacterial or mycotic superinfections and the occurrence of immunocompromising factors, such as malignancies, immunosuppressive drug intake, or decreased immunoglobulin levels. All these findings were particularly accentuated in partially vaccinated patients compared to fully vaccinated individuals. The virus dissemination observed in our case study may indicate that patients with an impaired immune system have a decreased ability to eliminate the virus. However, the potential role of antibody-dependent enhancement must also be ruled out in future studies. Fatal cases of COVID-19 in vaccinees were rare and often associated with severe comorbidities or other immunosuppressive conditions.


Subject(s)
COVID-19 , Aged , Autopsy , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Viral Load
8.
Nat Commun ; 13(1): 1589, 2022 03 24.
Article in English | MEDLINE | ID: covidwho-1764177

ABSTRACT

Progressive respiratory failure and hyperinflammatory response is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. Despite mounting evidence of disruption of the hypothalamus-pituitary-adrenal axis in COVID-19, relatively little is known about the tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to adrenal glands and associated changes. Here we demonstrate adrenal viral tropism and replication in COVID-19 patients. Adrenal glands showed inflammation accompanied by inflammatory cell death. Histopathologic analysis revealed widespread microthrombosis and severe adrenal injury. In addition, activation of the glycerophospholipid metabolism and reduction of cortisone intensities were characteristic for COVID-19 specimens. In conclusion, our autopsy series suggests that SARS-CoV-2 facilitates the induction of adrenalitis. Given the central role of adrenal glands in immunoregulation and taking into account the significant adrenal injury observed, monitoring of developing adrenal insufficiency might be essential in acute SARS-CoV-2 infection and during recovery.


Subject(s)
COVID-19 , Autopsy , Humans , Research , SARS-CoV-2 , Tropism
9.
Virchows Arch ; 480(3): 519-528, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1611405

ABSTRACT

Confronted with an emerging infectious disease at the beginning of the COVID-19 pandemic, the medical community faced concerns regarding the safety of autopsies on those who died of the disease. This attitude has changed, and autopsies are now recognized as indispensable tools for understanding COVID-19, but the true risk of infection to autopsy staff is nevertheless still debated. To clarify the rate of SARS-CoV-2 contamination in personal protective equipment (PPE), swabs were taken at nine points in the PPE of one physician and one assistant after each of 11 full autopsies performed at four centers. Swabs were also obtained from three minimally invasive autopsies (MIAs) conducted at a fifth center. Lung/bronchus swabs of the deceased served as positive controls, and SARS-CoV-2 RNA was detected by real-time RT-PCR. In 9 of 11 full autopsies, PPE samples tested RNA positive through PCR, accounting for 41 of the 198 PPE samples taken (21%). The main contaminated items of the PPE were gloves (64% positive), aprons (50% positive), and the tops of shoes (36% positive) while the fronts of safety goggles, for example, were positive in only 4.5% of the samples, and all the face masks were negative. In MIAs, viral RNA was observed in one sample from a glove but not in other swabs. Infectious virus isolation in cell culture was performed on RNA-positive swabs from the full autopsies. Of all the RNA-positive PPE samples, 21% of the glove samples, taken in 3 of 11 full autopsies, tested positive for infectious virus. In conclusion, PPE was contaminated with viral RNA in 82% of autopsies. In 27% of autopsies, PPE was found to be contaminated even with infectious virus, representing a potential risk of infection to autopsy staff. Adequate PPE and hygiene measures, including appropriate waste deposition, are therefore essential to ensure a safe work environment.


Subject(s)
COVID-19 , Personal Protective Equipment , Autopsy , COVID-19/prevention & control , Humans , Pandemics/prevention & control , RNA, Viral/genetics , SARS-CoV-2
10.
Front Med (Lausanne) ; 8: 761372, 2021.
Article in English | MEDLINE | ID: covidwho-1528833

ABSTRACT

The high mortality of COVID-19 is mostly attributed to acute respiratory distress syndrome (ARDS), whose histopathological correlate is diffuse alveolar damage (DAD). Furthermore, severe COVID-19 is often accompanied by a cytokine storm and a disrupted response of the adaptive immune system. Studies aiming to depict this dysregulation have mostly investigated the peripheral cell count as well as the functionality of immune cells. We investigated the impact of SARS-CoV-2 on antigen-presenting cells using multiplexed immunofluorescence. Similar to MERS-CoV and SARS-CoV, SARS-CoV-2 appears to be impairing the maturation of dendritic cells (DCs). DC maturation involves a switch in surface antigen expression, which enables the cells' homing to lymph nodes and the subsequent activation of T-cells. As quantitative descriptions of the local inflammatory infiltrate are still scarce, we compared the cell population of professional antigen-presenting cells (APC) in the lungs of COVID-19 autopsy cases in different stages of DAD. We found an increased count of myeloid dendritic cells (mDCs) in later stages. Interestingly, mDCs also showed no significant upregulation of maturation markers in DAD-specimens with high viral load. Accumulation of immature mDCs, which are unable to home to lymph nodes, ultimately results in an inadequate T-cell response.

11.
Diagn Microbiol Infect Dis ; 101(4): 115520, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1363963

ABSTRACT

Sample panels of SARS-CoV-2 cases were retrospectively whole-genome sequenced. In three individuals, samples of upper and lower respiratory tract resulted in identical sequences suggesting virus stability including the spike protein cleavage site. In a fourth case, low-level intra-host genomic evolution and a unique 5-nucleotide deletion was observed.


Subject(s)
Adaptation, Physiological/genetics , COVID-19/virology , Respiratory System/virology , SARS-CoV-2/isolation & purification , Whole Genome Sequencing , Genome, Viral , Humans , Retrospective Studies , Tissue Distribution
12.
PLoS One ; 16(7): e0254872, 2021.
Article in English | MEDLINE | ID: covidwho-1317145

ABSTRACT

BACKGROUND: COVID-19 is only partly understood, and the level of evidence available in terms of pathophysiology, epidemiology, therapy, and long-term outcome remains limited. During the early phase of the pandemic, it was necessary to effectively investigate all aspects of this new disease. Autopsy can be a valuable procedure to investigate the internal organs with special techniques to obtain information on the disease, especially the distribution and type of organ involvement. METHODS: During the first wave of COVID-19 in Germany, autopsies of 19 deceased patients were performed. Besides gross examination, the organs were analyzed with standard histology and polymerase-chain-reaction for SARS-CoV-2. Polymerase chain reaction positive localizations were further analyzed with immunohistochemistry and RNA-in situ hybridization for SARS-CoV-2. RESULTS: Eighteen of 19 patients were found to have died due to COVID-19. Clinically relevant histological changes were only observed in the lungs. Diffuse alveolar damage in considerably different degrees was noted in 18 cases. Other organs, including the central nervous system, did not show specific micromorphological alterations. In terms of SARS-CoV-2 detection, the focus remains on the upper airways and lungs. This is true for both the number of positive samples and the viral load. A highly significant inverse correlation between the stage of diffuse alveolar damage and viral load was found on a case and a sample basis. Mediastinal lymph nodes and fat were also affected by the virus at high frequencies. By contrast, other organs rarely exhibited a viral infection. Moderate to strong correlations between the methods for detecting SARS-CoV-2 were observed for the lungs and for other organs. CONCLUSIONS: The lung is the most affected organ in gross examination, histology and polymerase chain reaction. SARS-CoV-2 detection in other organs did not reveal relevant or specific histological changes. Moreover, we did not find CNS involvement.


Subject(s)
COVID-19/virology , Central Nervous System/virology , Lung/virology , Lymph Nodes/virology , Viral Load , Aged , Aged, 80 and over , Autopsy/statistics & numerical data , COVID-19/epidemiology , COVID-19/pathology , Central Nervous System/pathology , Female , Humans , Lung/pathology , Lymph Nodes/pathology , Male , Middle Aged
13.
Pathologe ; 42(2): 197-207, 2021 Mar.
Article in German | MEDLINE | ID: covidwho-1235733

ABSTRACT

BACKGROUND: The COVID-19 pandemic represents a so far unknown challenge for the medical community. Autopsies are important for studying this disease, but their safety was challenged at the beginning of the pandemic. OBJECTIVES: To determine whether COVID-19 autopsies can be performed under existing legal conditions and which safety standards are required. MATERIALS AND METHODS: The autopsy procedure undertaken in five institutions in Germany, Austria, and Switzerland is detailed with respect to legal and safety standards. RESULTS: In all institutions the autopsies were performed in technically feasible rooms. The personal equipment consisted of functional clothing including a disposable gown and apron, a surgical cap, eye protection, FFP­3 masks, and two pairs of gloves. In four institutions, complete autopsies were performed; in one institution the ultrasound-guided biopsy within the postmortal imaging and biopsy program. The latter does not allow the appreciation of gross organ pathology; however, it is able to retrieve standardized biopsies for diagnostic and research purposes. Several scientific articles in highly ranked journals resulted from these autopsies and allowed deep insights into organ damage and conclusions to better understand the pathomechanisms. Viral RNA was frequently detectable in the COVID-19 deceased, but the issue of infectivity remains unresolved and it is questionable if Ct values are greater than 30. CONCLUSIONS: With appropriate safeguards, autopsies of people who have died from COVID-19 can be performed safely and are highly relevant to medical research.


Subject(s)
COVID-19 , Pandemics , Austria , Autopsy , Germany , Humans , SARS-CoV-2 , Switzerland
14.
Intensive Care Med ; 47(1): 86-89, 2021 01.
Article in English | MEDLINE | ID: covidwho-897964
SELECTION OF CITATIONS
SEARCH DETAIL